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In this paper, the hydrodynamic and elastic forces arising in simple discrete and
continuous systems impacting on the water surface are investigated. Both the
impact of a single rigid wedge and the case of two elastically coupled bodies, where
the lower one is wedge directly plunging the water, are studied. The analysis is
performed by a simpli"ed theoretical model and by a numerical simulation of the
#uid}structure interaction. The concepts of residual and overall shock spectrum of
the slamming force are introduced. The attention is then addressed to the case of
a continuous #exural system. By an envelope analysis of the displacement response,
related to the hydrodynamic force spectrum, a slamming shock spectral expansion
is introduced. This model is able to provide some insight into the structural
response during the impact. The characteristic maxima in the time histories of the
elastic deformation are theoretically evaluated in terms of the impact quantities,
such as the deadrise angle of the wedge, the entry velocity and the structural
parameters. Results obtained by numerical simulations validate the theoretical
predictions. ( 2000 Academic Press
1. INTRODUCTION

The design of modern high-speed vessels makes it clear that extreme care must be
devoted to #uid}structure interaction problems. In particular, dangerous impact
phenomena occur in fast marine vehicles, leading to severe pressure load conditions
of the hull structure. The prediction of the pressure and structural stress are of
paramount importance, providing the tools for a better safety in ship design. This
topic belongs to hydroelasticity theory, particularly developed in ship science, and
illustrated in some fundamental works by Bishop and Price [1], Bishop et al. [2],
Price et al. [3], Korobkin [4] and Faltinsen [5].

In spite of the scienti"c and technical interest for this topic and some remarkable
works produced in this "eld, a full understanding of this complex impact
phenomenon is still missing.

Nevertheless, some basic phenomena occurring during the impact process are
well recognized. In fact, simple considerations show that, even though the water is
usually treated as incompressible, water compressibility e!ects are of some importance
0022-460X/00/030579#27 $35.00/0 ( 2000 Academic Press
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in the early stage of the contact. Actually, the intersection between the body and the
free surface expands with a velocity that strongly depends on the body's shape. For
a cylindrical body, impacting parallel to the free surface, the wetted area is bounded
by two lines that move along the body surface with a velocity depending on the
local deadrise angle. For #at-bottom pro"les, this velocity may become very large
and sometimes even larger than the speed of sound in water. In such a case, the
contact body surface acts as a supersonic source disturbance, implying that a
compressible model should be employed to describe the #uid dynamics of the impact.

In this context, Skalak and Feit [6], by using the acoustic approximation,
determined the pressure distribution and the total hydrodynamic force for
a semi-in"nite wedge entering the water with a constant drop velocity. Using
the same basic assumptions, Korobkin [7] developed a general theory for the
compressible stage of the impact, providing a closed-form solution for parabolic
pro"les and a solution by quadratures for a large class of contours.

However, even when a "rst supersonic edge condition initially holds, a second
subsonic stage of the impact occurs, due to the combined e!ect of velocity reduction
and possible increase of the deadrise angle. The edge velocity becomes subsonic and
an essentially incompressible stage takes place. Rather simple but e!ective models
to study the problem were introduced by Von Karman [8] and Wagner [9], by
assuming that the velocity "eld around the wetted part of the wedge can be
approximated by that around an expanding #at plate. The Von Karman model
considers a #at free surface while the Wagner approach accounts for a free surface
deformation leading to a more reliable result.

More recently, the water entry problem has been analyzed by a numerical
approach by Zhao and Faltinsen [10]. Through a boundary element formulation,
they simulated the #ow around a wedge for di!erent values of the deadrise angle. In
view of the extension to three-dimensional problems, the model has been
successively applied to axisymmetric bodies [11]. In a recent work, Xu et al. [12]
considered the problem of an axisymmetric vessel impact.

The problem of the structural response to the slamming load has been studied by
several authors by both theoretical and numerical approaches. Recent works on the
subject are those of Kim et al. [13] and Kalsvold and Faltinsen [14] in which the
impact of a two-degrees-of-freedom (d.o.f.) elastic system and that of a beam are
considered respectively.

In the above presentation, other occurring phenomena, such as the surface
tension and air cushion, may be considered. Although a!ecting the #uid dynamic
solution, surface tension does not change signi"cantly the hydrodynamic load. On
the contrary, for rather #at bottom geometries impacting on a rough sea, the air
trapping may sensibly a!ect the pressure distribution and, thus, the total load on
the hull. A survey on the subject is provided by Korobkin and Pukhnachov [4].

Most of the works developed in hydroelastic impact account for a constant entry
velocity. In such a case, the hydrodynamic force on the body entering the water is,
at least at an early stage of the impact, a quantity increasing with respect to time: in
fact, the velocity is constant but the wetted area increases and it is responsible for
the hydrodynamic force growth. Moreover, most of the scienti"c literature provides
the results of the hydroelastic impact by using numerical tools. Although this
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analysis provides accurate results even for complex systems, generally a full
understanding on how each parameter plays its role in the phenomenon is not
easily recovered by numerical simulations.

In the present paper, a di!erent point of view of hydroelastic impact is
introduced, aimed at "nding closed-form relationships providing the maximum
structural elastic response in terms of the whole set of impact parameters. In this
frame, the body velocity reduction during the impact plays a key role in the
maximum elastic response. The sudden velocity decreasing when the structure hits
the water surface, tends to reduce the hydrodynamic force, while an opposite e!ect
is due to the wetted increasing area. In the "rst stage the second e!ect is dominant;
in the second short stage the two opposite phenomena "nd a balance and in the
third stage the "rst e!ect de"nitely prevails. This leads to a characteristic time
history of the hydrodynamic force. Initially it grows very fast; then a characteristic
maximum peak follows and "nally it decays.

The shock nature of this "nite energy signal has here suggested the use of special
and fruitful tools of analysis. One of these is certainly the shock spectrum. In fact,
for "nite energy input signal injected into a linear system, it provides the maximum
of the output as a function of the system natural frequency. Moreover, this results is
found without a direct solution of the problem; thus it seems to be a potentially
attractive approach.

This results can be achieved only when a sharp characterization of the input force
is available. Thus, a suitable simpli"ed hydrodynamic model is also proposed and
the impact force spectrum is determined in closed form. A systematic comparison is
also made with a numerical model that fully accounts for free surface e!ects and
non-linear hydroelastic interaction and with experimental results.

In the following a shock-spectral approach to water impact is systematically
stated, dealing with a simple one-mode system and a multi-modal structure. The
result seems to be promising, since the proposed method presents the following
characteristics:

* not a direct solution of the problem is needed; this allows to recognize directly
the e!ect of each parameter on the structural response and some simple
interaction principles clearly arise;

* the method can be employed for wide parametric analyses, e.g., in order to "nd
optimal design of the impacting system, since it does not require to develop each
time a direct solution of the problem. This fact is relevant because numerical
simulations of the hydroelastic coupled problem are extremely heavy, especially
in view of parametric investigations;

* following the outlined procedure for a multi modal system (plate case) it is not
di$cult to generalize the approach to more complicated structures, eventually
described by a "nite element model.

These reasons seem to provide a good motivation for attempting this new
approach to the water shock.

The basic result presented in the paper concerns the derivation of simple
closed-form relationships that predict the value of the physical quantities, as the
entry velocity, carried out impacting masses, the sti!ness of the elastic connection
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(or thickness, length and elastic constant for a #exural system), the deadrise angle that
lead to a &&dangerous'' elastic response, i.e., to a maximum of the elastic force and stress.
This particular combination of parameters is referred to in the following as &&critical
condition'', which is determined in the paper under some particular assumptions.

The simpler considered system consists of two masses, where the lower one is
a rigid wedge directly impacting the water. The attention is focused on the
incompressible stage and, for this reason, the deadrise angle is chosen large enough
to avoid supersonic edge conditions.

The study is carried out by using both a theoretical approach and a numerical
model able to provide the slamming force.

The theoretical model is based on a simpli"ed representation of the
hydrodynamic force in terms of the actual depth and drop velocity of the impacting
body. The study of the impact of the single wedge provides an analytical solution of
the problem that turns to be useful for the theoretical prediction of the occurrence
of critical conditions in the case of impact of an elastic system. In fact, a general
analysis can be performed by using the concept of shock spectrum that leads to
some general properties of the water impact force.

A second mathematical model is provided for the analysis of a wedge with elastic
sides, #exurally deforming (plates). In such a case, a convenient closed-form spectral
solution is provided. By using the hydrodynamic load determined for the rigid wedge
case, both an inertial and a travelling pressure load are applied to the dropping plate.

In order to provide a characteristic relationship between hydrodynamics and
structural response, the envelope of the time history at each plate location is
determined by using the Hilbert transform. Its maximum is then evaluated by a
generalization of the slamming shock spectrum concept, by eliminating the time
dependence. The obtained spectral expansion is then modi"ed by a suitable use of
the Schwarz inequality that also allows for the elimination of the space dependence.
Finally, a dimensionless form of the maximum envelope response leads to a simple
spectral expansion in terms of the main parameters involved in the impact
phenomenon.

The theoretical analysis is compared with some numerical results. In this case the
solution of the hydrodynamic problem is obtained by a boundary element
formulation that solves the Laplace equation in terms of the velocity potential in
a way similar to that proposed by Zhao and Faltinsen [10] but here accounting
both for a variable velocity and the hydroelastic coupling. A comparison is also
made with the experiment described in reference [13].

The theoretical model employed for the cases of a single wedge and of a 2 d.o.f.
elastic system is discussed in the next section, while in section 3 the mathematical
formulation for continuous structures is presented. Finally, the boundary element
numerical model to predict the hydrodynamic force is described in section 4.

2. THE HYDRODYNAMIC FIELD: AN APPROXIMATE SOLUTION

In this section, a simpli"ed theoretical model for predicting the slamming force
time history for a wedge plunging the water surface is proposed with applications to
the rigid-body case and to simple elastic systems.
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Although more sophisticated models can be developed to deal with water entry
problems [10}12, 15] and a modi"ed version of these is detailed in section 4
(accounting for a variable velocity and the hydroelastic interaction), the chance of
determining an explicit parametric dependence of the hydrodynamic force on the
quantities involved in the impact phenomenon is of fundamental importance in the
analysis of the present problem.

Following an approach developed in references [16, 17], the present method
allows for a simple analysis of the impact phenomenon leading to the analytical
estimate of two basic quantities: the maximum slamming force F* and the
characteristics time delay t* between the initial instant of the impact and the instant
at which the force peak occurs. F* a!ects directly the amplitude of the structure
response, while t* controls the peak frequency of the hydrodynamic force spectrum.

The hydrodynamic force acting on a massive wedge follows a characteristic
evolution. On the one hand, the drop velocity decay causes a reduction of the
slamming pressure while, at the same time, the wetted length increases. In the "rst
stage of the impact, the latter e!ect dominates over the former and an increasing
trend of the force is observed. At t* the two opposite phenomena "nd a balance and
a characteristic maximum is reached. Successively, the velocity reduction prevails
against the increase of the wetted length and the slamming force de"nitively decays.

Let us consider a two-dimensional wedge of mass m per unit length, impacting on
the water surface with an initial drop velocity v

0
. The equation of motion simply

reads mfG#F
h
"0, where F

h
and f are the hydrodynamic force (per unit length) and

the depth respectively.
By simple considerations, based on the momentum conservation, the following

expression for the hydrodynamic force is obtained [8, 18]: F
h
"gol3

0
t. The

g coe$cient is a function of the deadrise angle b of the wedge. Its expression
has been derived by several authors using theoretical analysis or numerical
computations. Following the approach of Von Karman [8] or Wagner [9]
(approximating the #ow about the entering wedge with the #ow around a #at plate)
g takes the form g"nc/tan2b, where c"1 or n2/4 respectively. More sophisticated
models, as those developed by Vorus [15], Zhao and Faltinsen [10] and
Dobrovol'skaya [19], reveal that c is a function of the deadrise angle. Hence, the
hydrodynamic force is expressed by

F
h
"noc (b) l3

0
t/tan2b.

In the present analysis, the estimate of c, obtained in [10] by the similarity
approach [19], is used.

It is interesting to notice that if k is the added mass, the hydrodynamic force can
be written as F

h
"d/dt(kl

0
). By a direct comparison of the two last expressions

of the force, k"o (n/2) (Jc(b) l
0
t/tan b)2. Now, the added mass of a #at plate of

length ¸ is o (n/2) ¸2, and then it is natural to interpret k as the added mass of
a plate of length Jc(b) l

0
t/tan b. Since l

0
t/tanb is the length corresponding to the

geometric intersection between the wedge and the unperturbed free surface, Jc(b)
can be interpreted as a correction factor providing an estimate of the length over
which the hydrodynamic load acts.
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To estimate the typical maximum of the hydrodynamic force, a model ac-
counting for the velocity decay must be necessarily introduced. When a variable
drop velocity is considered, a reasonable approximation for the hydrodynamic
force can be used:

F
h
(f, f0 )"

noc
l
0
tan2b

f0 3f, (1)

where the term l3
0
, appearing in the Wagner solution, is replaced by f0 3. Moreover,

in view of a closed-form solution, the direct dependence of F
h
on time is eliminated

by letting t"f/l
0
.

With these assumptions, the equation of motion becomes

fG#Af0 3f"0, where A"

noc
mv

0
tan2b

. (2)

This non-linear equation admits an analytical solution that can be obtained by
introducing a variable transformation and solving the resulting equation by
separation of variables, leading to [7]

f0 "
2l

0
2#Al

0
f2

, F
h
(f)"mAf0 3f"mA A

2l
0

2#Al
0
f2B

3
f. (3)

Starting from equation (3), it is possible to obtain the relative maximum F* of
F
h
(f) and the time t* at which it occurs. In fact, from the solution of the algebraic

equation dF
h
/df"0, it follows that

F*"F
h
(f*)"A

5
6B

3

S
2n
5

ocm
l2
0

tan b
, t*"t(f*)"

16
15 S

2m
5noc

tan b
l
0

, (4)

where f* is the depth at which the maximum occurs.
It is interesting to note that f* is simply related to t*, actually f*"15

16
l
0
t*,

indicating that, although responsible for the relative maximum of the slamming
force, only a small reduction of the entry velocity occurs up to t*.

A useful relationship between F* and t* can be also determined. In fact, simple
mathematics leads to F*t*"20

81
mv

0
+0)247 ml

0
, that is used in the following.

These results solve completely the problem related to the simple model
represented by equation (2). Their use in predicting the response of the elastic
system is discussed in the next section.

To validate the theoretical formulation, a comparison with an experiment
described in reference [13] is performed. The test case refers to a wedge with
a deadrise angle of 233, a mass per unit length of 398 kg and an initial drop velocity
l
0
"6)9 m/s. The theoretical prediction of the vertical acceleration is in good

agreement with the experimental data (Figure 1).
Although this simple approach provides the hydrodynamic force, the actual

pressure distribution is still unknown. However, it must be computed when
considering a continuously deforming system. In fact, although several
simpli"cation hypotheses will be introduced in the next section for the plate water



Figure 1. Comparison between the theoretical and the experimental vertical acceleration versus
time. #, experimental;**, theoretical.
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entry, that do not involve directly the pressure "eld, it must be determined to
provide comparisons between theoretical and numerical results.

Zhao and Faltinsen [10] demonstrated that, following the theory of matching
asymptotic expansion, it is possible to determine a composite solution for the
pressure distribution around a wedge when a constant drop velocity and small
deadrise angles are considered. In this procedure, the #ow "eld is divided into an
outer and an inner region. The former is solved by the above-mentioned expanding
#at plate approximation [9], that provides the wetted length c(t), i.e., the length of
the portion of the wedge side directly in contact with the water, bounded by the
intersection point between the body and the free surface. In the latter region, close
to the edge of the wetted area, the details of the jet #ow around the abscissa c (t) are
analyzed.

The pressure "eld is given by

p"G
l
0
ccR (c2!x2)~1@2!ol

0
ccR (2c(c!x))~1@2#2o cR 2 Dq D1@2 (1#Dq D1@2)~2,

for 0)x)c,

2ocR 2 DqD1@2(1#Dq D1@2)~2

for x'c,

where c"(n/2) l
0
t/tanb, cR"(n/2) l

0
/tanb. Moreover, the parameter q appearing

in the previous relationships varies from 0 to R, and is related to the abscissa x by

x!c"
d
n

(!ln Dq D!4 DqD1@2!DqD#5).

These results hold for a constant entry velocity.
To account for the velocity decay, the pressure "eld can be rearranged by letting

c"Jcf/tanb, consistent with the approximation made on the hydrodynamic force.



586 A. CARCATERRA E¹ A¸.
With these positions an approximate pressure distribution is obtained. However,
the integral of this pressure "eld over the estimated wetted length leads to an
hydrodynamic force similar to that obtained by the approximate analysis
developed in the "rst part of this section, and by the boundary element model
described in section 4.

3. A SHOCK SPECTRAL APPROACH TO WATER SLAMMING

In this section, the analysis of the response of an elastic impacting system is
investigated.

A 2 d.o.f.s and a continuous #exural system are considered. The pulse nature of
the slamming force, determined in the previous section, suggests an approach to the
problem by using the shock spectrum theory. The simpler discrete elastic system
leads to the concept of the slamming shock spectrum whose dimensionless form
allows for the prediction of the occurrence of critical conditions, as described in
section 3.1.

The behaviour of the elastic #exural system is more di$cult and requires more
sophisticated mathematical tools. However, even in this case, a serial expansion in
terms of modal shock spectra is provided in section 3.2, once a suitable use of the
Hilbert envelope and of the Schwarz inequality is made, providing the slamming
shock spectral series.

3.1. TWO DEGREES-OF-FREEDOM SYSTEM

A simple system is investigated here, consisting of two elastically coupled bodies
of mass m

1
and m

2
. The lower one, a rigid wedge with mass m

1
, directly impacts the

water, while the upper is suspended over the "rst one by a spring of sti!ness k.
Although this is an elementary structure, it can be investigated as a prototype

system whose behaviour reveals important characteristics of the structural water
shock response. An interesting analysis of the impacting oscillator can be found in
a recent work of Kim et al. [13].

The search for the critical condition of the impacting 2 d.o.f.s oscillator is
proposed. For example, it could be requested to predict, when existing the critical
value of the sti!ness k, i.e., the value that leads to the maximum amplitude of the
spring elastic force, once all the other impact parameters are given.

Since in the previous section the evaluation of the hydrodynamic force was
obtained, it is interesting to study under which conditions this force is almost
independent of the elastic force, i.e., when the motion of m

1
is substantially not

a!ected by m
2
. In such a case the hydrodynamic force analysis, developed in section

2, can still be considered valid.
Let us introduce, for simplicity, the non-dimensional parameters p"ol2

0
/k and

d"m
2
/m

1
. When the elastic force F

e
satis"es the condition F

e
@F

h
, its e!ect on F

h
is negligible. In terms of the non-dimensional parameters, this situation implies the
condition Jp/dAtanb. Hence, the suspended mass behaves like a mass on
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a foundation that receives a known shock acceleration of the form F
h
(t)/m

1
, where

F
h
(t) is determined in section 2.
In this case, the shock spectrum technique can be pro"tably used to predict the

maximum response of the suspended mass as a function of the natural frequency
f
n
"1/(2n)Jk/m

2
of the system itself. The residual shock spectrum S ( f

n
) represents

the maximum response of the system for t'¹, where ¹ is the time duration of the
shock waveform, i.e., the maximum amplitude of the vibration response when
a stationary oscillation is reached [20, 21]. S ( f

n
) is related to the Fourier transform

F of the shock signal by the following relationship:

S ( f
n
)"2n f

n
DF( f

n
) D. (5)

Even though equation (5) could be directly employed to provide the shock
spectrum once the hydrodynamic force is known, a more general and even simpler
result can be obtained by introducing a suitable non-dimensional form of the
hydrodynamic load. If relations (4) are rewritten in terms of the following
non-dimensional variables: tI"t/t*, f3 "f/f*, FI

h
"F

h
/F*, the hydrodynamic force

takes the form

FI (tI )"
81
20l C

2
2#f3 2/lD

3
f3 , l"

m
o (v

0
t*)2

tan2b
nc (b)

,

5
2 A

15
16B

2
. (6)

Equation (6) reveals that the slamming force is invariant with respect to the
impact parameters when this particular non-dimensional form is chosen. This
allows an analysis that is not case dependent and the spectral properties of the
slamming force can be investigated once for all by using the previous equation. The
shock spectrum of the force

SI
RES

( fI
n
)"2n fI

n
DFI MFI

h
ND (7)

is represented in Figure 2 versus the non-dimensional frequency fI
n
"f

n
t*. The

actual elastic force can be determined by multiplying the residual shock spectrum
by the maximum hydrodynamic force F* and by the mass factor d"m

2
/m

1
. By

direct inspection of the shock spectrum curve, it appears that the relative maxi-
mum occurs at fI

n
:0)2 and, hence, the critical frequency can be estimated as

fI
cr
"( f

n
t*)

cr
"0)2.

The asymptotic residual response does not provide the maximum vibrational
amplitude of the system during the transient excitation (i.e., when t(¹). To this
end the overall shock spectrum must be computed. This requires the direct
evaluation of the absolute maximum of the elastic response. Even in this case
a single characteristic overall spectrum is determined, capable of dealing with any
impact condition. By using the non-dimensional quantities introduced earlier one
has for the elastic force,

FI
e
(tI , fI

n
)"P

`=

~=

1/[1!( fI / fI
n
)2] FI MFI

h
N e2nj fI tI d fI .

Thus, the slamming overall shock spectrum is

SI
OV

( fI
n
)"max MFI

e
(tI , fI

n
)N, 0)t(R.



Figure 2. Shock spectrum of the hydrodynamic force versus the non-dimensional frequency.
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Again the actual elastic force is determined as a function of the amplitude factor
F*d. This characteristic function has been evaluated and plotted in Figure 2. Its
relative maximum falls in correspondence of fI

cr
"( f

n
t*)

cr
"0)34.

The determined conditions fI
crRES

"0)2 and fI
crOV

"0.34 have a general nature
and can be employed for the prediction of the critical values of any of the
parameters involved in the impact phenomenon. In fact, by making explicit the
expression of t* given in section 2, and the expression of f

n
, one has

( f
n

t*)
cr
"fI

cr
N A

tan b

Jc(b)

1

JpdBcr"
15n
8 S

5n
2

fI
cr

that allows one to compute the critical values of the required dimensionless
parameters once the others are given. This relationship provides a general answer
to the question proposed at the beginning of this section.

If one is interested in the critical value, e.g., of the elastic constant k, after simple
mathematics the parameter p

cr
is determined, i.e.,

p
crRES

"

25
4n3

1
dl

tan2b
c

, p
crOV

"

8)16
4n3

1
dl

tan2b
c

(8)

and thus

k
cr
"

ol2
0

p
cr

. (9)

It is clear that a complete set of critical values of the impact variables can be
derived besides k

cr
, i.e., a critical velocity, deadrise angle, suspended and impacting

mass.
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It is apparent that, in correspondence with the critical condition, the maximum
elastic force has the same order of magnitude as that of the hydrodynamic one,
being SI

RES
( fI

cr
)+1)3, SI

OV
( fI

cr
)+1)8, at least if the mass factor d is of unit order of

magnitude. Therefore, in that case, it can be concluded that the initial assumption
F
h
AF

e
does not strictly hold. In this case, a strong coupling between

hydrodynamic and elastic force is expected. However, this does not a!ect sensibly
the estimate of the critical frequency and even the maximum of the elastic force
agrees quite satisfactorily with the numerical results. On the contrary, when d is
small, the analysis is valid in the whole frequency range.

In order to test these results, several impact simulations were performed by
varying the values of k and of p. The mass ratio is d"1, while the deadrise angle is
103 and the corresponding c is 2)2. The choice d"1 is aimed to perform the
comparison even when F

h
KF

e
.

First the hydrodynamic force is determined via numerical simulation based on
a boundary element discretization of the free surface, whose details are given in
section 4. This force is directly applied to the impacting mass and the coupled
hydroelastic equations are solved. The maxima of the elastic force obtained for each
elastic force time history, corresponding to di!erent values of p, are plotted in
Figure 3. The same simulations are performed by using the hydrodynamic force
expression derived in section 2, and a good agreement is shown in Figure 3. The
shock spectra provide a priori the critical values p

OV
:0)00042 and p

RES
:0)00135.

The numerical simulation "nds p:0.0008 that falls into the interval [p
OV

, p
RES

]. It
is a quite good result especially considering that, in that region, the curve appears
to be rather #at.

3.2. CONTINUOUS FLEXURAL STRUCTURE

In this section, some general properties of the elastic response of a wedge
consisting of two elasticity deforming sides are investigated. The technique is based
Figure 3. Maxima of the elastic force versus p: *#*, numerical; }]}, theoretical.
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on the idea of a shock spectral approach that is carried on by using the Hilbert
envelope [22], the Schwartz inequality and some results of the previous section.

More precisely, the theoretical analysis of the structural response follows the
steps listed below:

f statement of the basic governing equations,
f analysis of the time-domain Hilbert envelope,
f application of the Schwarz inequality and de"nition of the water shock spectral

series.

Some simpli"ed hypotheses are accounted for:

(i) The structural deformation is small and does not a!ect the #ow around the
wedge. This implies that the motion of the centre of gravity of the wedge corres-
ponds to the entry of a rigid body. Thus, the model developed in the previous
section is still valid to predict the total force on the structure.

(ii) The e!ect of the added mass is neglected when considering conditions in
which the wetted length is small with respect to the vibrating length of the plate.
This allows to neglect the e!ects of the #uid inertia by studying the bending
response of the plate.

Therefore, the added mass associated with the rigid-body motion is accounted
for by the hydrodynamic model developed in section 2 and by the numerical
solution given in section 4. The added mass related to the elastic deformation of the
plate and the structure}#uid coupling are indeed neglected (i), (ii). These
simpli"cations allow to determine the shock spectral approach capable of
providing simple parametric dependencies of the bending moment on the impact
quantities.

Further simpli"cations will be introduced during the derivation of the spectral
solution and will be discussed later on.

The formal consequences of hypotheses (i) and (ii) are detailed in the following
sections.

3.2.1. Basic governing equation

Following the scheme of Figure 4, let us introduce two di!erent reference
systems, R

0
(x

0
, y

0
, z

0
) and R

G
(x

G
, y

G
, z

G
), the "rst "xed on the water surface while

the second, with axes parallel to those of the "rst, follows the wedge centre of
gravity G.

Neglecting the three-dimensional hydrodynamic e!ects at the edges and using
the result of section 2 and hypothesis (i), the motion of G is described by
mfG

G
#F

h
"0, where m is the total wedge mass per unit length along y

G
and f

G
(t) is

the centre of gravity displacement with respect to R
0
. The total mass consists of two

contributions: the "rst 2m
p

is the mass of the impacting #exural structure
(consisting of two plates), while 2m

s
is the carried mass. In the following

developments, it is easier to express the total mass m in the terms of the mass of
a single wedge side (m ), i.e., m"am .
p p



Figure 4. Structural model and reference systems.
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The plate's structural model has to take into account the following e!ects:
(i) a hydrodynamic pressure load p

w
, moving along x with velocity v

e
and (ii) an

inertial uniformly distributed load on the plate, proportional to fG
G

(see Figure 3).
Assuming that each plate behaves as an in"nite along y

G
, according to the

hydrodynamic model, the y
G

co-ordinate disappears in the equation of motion.
Taking advantage of the symmetry of the problem, it is possible to study only the
elastic response of one wedge side. Moreover, in the following (as in section 2), we
refer to a unit length along the y

G
co-ordinate.

Let f0
e
(x

G
, t) be the relative elastic plate's de#ection with respect to R

G
. Therefore,

the displacement f(x
0
, t) of a plate's point P(x

G
, y

G
) with respect to R

0
is f(x

0
, t)

"f0
e
(x

G
, t)#f0

G
(t). Consequently, the plate's equation reads

D
L4f

e
Lx4

G

#o
s
h

L2f
e

Lt2
"p

w
!o

s
h

L2f
G

Lt2
"p, (10)

where o
s
is the material density, D"Eh3/12(1!l2

s
) is the plate sti!ness, E and l

s
being the Young's modulus and the Poisson ratio respectively and h the plate's
thickness.

The equation of rigid-body motion allows to express L2f
G
/Lt2 in terms of F

h
(t),

known from section 2. In fact, the following relationship holds: F
h
(t)"m

p
aL2f

G
/Lt2,

so that L2f
G
/Lt2"F

h
(t) /m

p
a. On the other hand, the pressure "eld p

w
is not simply

recoverable. When a variable drop velocity is accounted for, a suitable expression
of the pressure "eld can be found by substituting the actual drop velocity into the
Wagner expression, as described in section 2. This approach will be used later to
produce comparison results.

In the present section, aimed at studying in closed form the bending shock
spectral properties, the hydrodynamic travelling pressure load is replaced by
a moving rectangular pressure distribution, whose front is applied in corres-
pondence with the end of the wetted length of the wedge. Moreover, the load is
supposed to move at a constant speed l

e
, while actually a weak decrement of it is

predicted by the theory (see section 2).
The amplitude of the travelling pressure is simply obtained by its space-average

at time t, i.e.,

p
w
"

F
h
(t)

2 l t
=(x

G
), = (x

G
)"G

1 for x
G
)l

e
t,

0 for x 'l t.

e G e
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In this way, the r.h.s. of equation (10) takes the simpli"ed form

p(x
G
, t)"F

h
(t) C
= (x

G
)

2l
e
t
!

1
a¸D .

Let us express the plate elastic motion by a modal expansion, i.e., f0
e
(x

G
, t)"

+=
k/1

'
k
(x

G
)q

k
(t), '

k
, q

k
being the eigenfunctions and the normal co-ordinates

respectively. The Lagrangian co-ordinates are recovered by solving the equations

qK
k
#j2

k
q
k
"P

L

0

p(x
G
, t) '

k
(x

G
) dx"I

k
(t).

In the following, simply supported ends are considered and thus the
eigenfunctions are simply harmonic. Although this is a particular case, the results
obtained are signi"cant for understanding some basic e!ects related to the
slamming load on the structure. By using the determined expression of the pressure
"eld, after some mathematics one has

I
k
(t)"S

2
m

p

F
h
(t)

n k A
(!1)k!1

a
#

¸

2l
e
t C1!cos

nkl
e
t

¸ DB
where l

e
"l

0
Jc/tanb. Again the wetted length correction factor Jc has been

used. Starting from this expression, some relevant properties of the solution of the
plate's equation can be predicted on the basis of the studied slamming shock
spectrum.

3.2.2. Structural response via the Hilbert envelope and Schwarz inequality

The kth Lagrangian co-ordinate is determined by the convolution integral

q
k
(t)"

1
u

k
P

t

0

I
k
(q) sin u

k
(t!q) dq

Since F
h
(t)"0, when t(0, the lower limit of the integral can be substituted with

!R. Moreover, the slamming force rapidly decays because of its pulse nature. In
fact, from section 2 one has that

F
h
(t)+0 when t'nt* Aif n"8P

F
h
(t)

F*
(0)1B

Therefore, when t'nt*, the previous integral is replaced by

q
k
(t)"

1
u

k
P
`=

~=

I
k
(q) sin u

k
(t!q) dq.

Let us now introduce the Hilbert transform H. The analytic signal associated
with the kth generalized co-ordinate is qL

k
"q

k
#jHMq

k
N. The modulus of the

analytic signal provides the so-called Hilbert envelope [22], that is actually the
envelope of the time history of the signal itself. This analysis is extremely useful to
cancel out the time dependencies of the system response while holding its maximum
value.
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By using some basic properties of the Hilbert operator (see Appendix A) it
follows that

qL
k
"!

j
u

k

eju
k
t P

`=

~=

I
k
(q) e!ju

k
q dq N qL

k
"!

j
u

k

eju
k
t F

k
MI

k
(t)N

where F
k
denotes the Fourier transform of kernel e!ju

k
t. Consequently, an analytic

elastic displacement f)
e

can be also de"ned as

f)
e
(x

G
, t)"f

e
#jHMf

e
N"

=
+
k/1

S
2
m

p

sin
nkx

G
¸

qL
k
(t). (11)

The introduction of a dimensionless analysis is convenient. The plate's
non-dimensional natural frequencies are fI

k
"k2 fI

1
"k2 ( f

1
t*), where f

1
is the "rst

natural frequency of the structure. After some mathematics (see Appendix B) the
non-dimensional analytic signal is obtained:

qL
k
(tI )

Jm
p
f*

"!ea j
e2njk2 fI

1
q8

2nk2 fI
1

FI
k
MII

k
N, (12)

where e"64 J2/243 and

FI
k
( ) )"P

`=

~=

( ) ) e!2njk2 fI
1
mJ dtI ,

II
k
"

I
k

F* J2/m
p

"

FI
h
(tI )

n k A
(!1)k!1

a
#

¸

4 fI
e
tI

[1!cos 2nk fI
e
tI ]B

where fI
e
"l

e
t/2¸. Therefore by substituting equation (12) into equation (11) the

elastic beam de#ection is expressed by

f)3
e
(xJ , tI )"

f)
e
(xJ , tI )
f*

"!J2 e a
1

2n fI
1

=
+
k/1

z
k

sin nkxJ
k

z
k
"j

e2njk2 fI
1

tI

k
FI

k
MII

k
N, xJ "

x
G
¸

.

By separating the real and imaginary parts in the previous relationship one
obtains

f)
eR,l
f*

"J2ea
1

2n f
1

=
+
k/1

z
kR,1

sinnkxJ
k

.

f)
eR,I

, z
kR,I

being the real (R) and the imaginary (I) parts of the corresponding
complex quantities.

The application of the Schwarz inequality [23] allows one to write

=
+
k/1

z
kR,I

sin knxJ
k

)C
=
+
k/1

z2
kR,I

=
+
k/1

sin2 knxJ
k2 D

1@2
.
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Moreover, the dependence on the dimensionless space co-ordinate can be
suppressed by using the following inequality:

=
+
k/1

sin2 knxJ
k2

)

n2

2
(1!xJ )xJ )

n2

8
,

where the Fourier expansion of (1!xJ ) xJ is performed. By combining the previous
equations, the modulus of the dimensionless analytic displacement satis"es the "nal
inequality:

D f)3
e
D)

n
2

ea
2n fI

1
S

=
+
k/1

D z
k
D2 .

This is the condition holding for the Hilbert envelope of the elastic beam
displacement with respect to the time variable. The written inequality is satis"ed at
any time and for any point along the plate.

This equation deserves some comments. It is important to note that both the
time and space dependencies are suppressed and the terms on the r.h.s. actually
depend only on the elastic and impact parameters of the problem. Therefore, we are
now able to discuss the upper bound of the elastic residual displacement (by its
envelope) in terms of the characteristic parameters of the problem, by a way
analogous to that developed in section 2.

3.2.3. De,nition of the water shock spectral series

The last step consists of further developments to provide the required spectral result
in terms of the internal elastic force on the plate. In particular, the water shock spectral
series is introduced. Let us approximate the analytic residual bending moment by

MK
B
+n2

Df)
e

¸2
. (13)

After some mathematics and using the result of the previous section, the
following expression is obtained (see Appendix C):

DMI
B
D"K

MK
B

p
0
¸2 K)5A

15
16B

2
e

Jc
tgb

fM
eS

=
+
k/1

SI 2
k

k6
, SI

k
"2n fI

k
DFI

k
(II

k
) D, p

0
"

1
2

o
w
l2
0
,

where S3
k
, de"ned in analogy to the shock spectrum given in section 2, is the water

shock spectrum modal component. This relationship provides the dimensionless
bending moment MI

B
in terms of the all the involved parameters, i.e., a, fI

1
, fI

e
and b.

Although the explicit form of the spectral functions SI
k
is obtained in Appendix D,

its physical meaning is discussed below.
Two di!erent spectral contributions play their role in the shock spectral

components: the inertial slamming spectrum SI (I) and the travelling slamming
spectrum SI (T) :

SI
k
(a, fI

1
, fI

e
)"K

(!1)k!1
nak

SI (I) ( fI
k
)

#

1
4nk fI

e

SI (T) ( fI
k
)!

1
8nk fI

e
C
SI (T) ( fI

k
#k fI

e
)

1#fI
e
/(k2 fI

1
)
#

SI (T) ( fI
k
!k fI

e
)

1!fI
e
/(k2 fI

1
) D K . (14)
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They are complex functions, formally similar to the residual shock spectra of
a known slamming signal.

The "rst, SI (I), is just the residual shock spectrum of the slamming force FI
h

as
introduced in section 2, but in complex form because it does not involve the
modulus of the Fourier transform (see Appendix D). It is related to the structural
excitation induced by the inertial e!ect, i.e., by the sudden deceleration produced
when hitting the water surface. Of course, each mode reacts to this excitation and
the corresponding spectral contribution is represented by the "rst term on the r.h.s.
of equation (14). It is obtained by the residual shock spectrum of the rigid body
entry where the frequency argument is replaced by fI

k
for each modal contribu-

tion. The second term on the r.h.s. of equation (14) accounts for of the travelling
pressure load. SI (T) is the complex residual shock spectrum of the signal FI

h
/tI that

characterizes the spectral properties of a rectangular pressure distribution. Finally,
the term in square brackets, simply obtained by shifting the travelling shock
spectrum, is directly related to the speed of the pressure load that has also an e!ect
on the structural response.

The residual and the overall shock spectra are represented in Figures 5 and 6 for
both the inertial and the travelling load contributions.

It must be note that the moment associated with equation (14) is obtained in
terms of residual vibrations with some approximations. Therefore, a direct
comparison with the absolute maxima of the numerical simulations does not
provide a completely satisfactory agreement. Since some information about the
overall spectrum has been obtained in the previous analysis, this can be suitably
introduced into expression (13). Thus the original spectral series is slightly
modi"ed, by introducing the average shock spectrum series leading to DMI D

AV
de"ned as in Appendix E. The comparisons with numerical simulations are
performed with this last quantity.
Figure 5. Residual shock spectrum for the inertial and the travelling load versus the non-dimens-
ional frequency.



Figure 6. Overall shock spectrum for the inertial and the travelling load versus the non-dimen-
sional frequency.
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Therefore, the shock spectral series related to the bending moment is a function
of four parameters only: a, fI

1
, fI

e
and b. This simpli"es considerably the analysis of

the impact problem and allows for the prediction of critical conditions in terms of
simple and general relationship among the three dimensionless quantities. These
conditions are investigated once and for all by analyzing the serial shock spectrum
and the results can be easily translated in terms of the actual physical quantities
involved in the phenomenon.

The expression provided reveals that when fI
e
P0, the travelling shock terms

vanish and only the inertial shock term survives. Moreover, the presence of the 1/k6
factor in the spectral series guarantees a fast convergence of the series itself.

The developed analysis neglects the possible modi"cation of the #ow about the
wedge due to the structural deformation.

This condition can be expressed in terms of the dimensionless variables of the
problem. When fI

e
@1 the plate}water interface is localized around the vertex line of

the wedge and the local deformation is clearly associated with the plate slope h at
the vertex support. If h@b, it can be reasonably assumed that the water-#ow is not
a!ected by the structural deformation, i.e., the local deadrise angle is not sensibly
modi"ed during the impact.

Therefore, condition (i) previously introduced, "nds a suitable translation in
terms of the three dimensionless de"ned parameters. More precisely, it can be
written in analytical form (see Appendix F) as

(i) f
e
@f

G
N fI

e
D 1!a fI

e
D@ fI

1
besides the obvious one:

(ii) l
e
t*@¸ N fI

e
@1.

Thus, the determined shock spectral series can be used correctly only under these
constraints.
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Some comparisons between numerical simulations and the results obtained by
the shock spectral series are presented.

The direct numerical solution of equation (10) is determined. The pressure
contribution to the external load has been determined by the Wagner theory [9] in
which the velocity, assumed to be constant, is replaced by the actual drop velocity
provided by equation (3). In Figure 7 a typical bending moment distribution is
plotted versus time. Several simulations of the elastic response are obtained by
varying fI

1
and for each time history the maximum of the surface plotted in Figure

8 is kept. The results of this time-consuming analysis are compared with the fast
shock spectral series prediction. Both curves refer to b"153, fI

e
"0)16. The same

comparison is shown in Figure 9 and b"153, fI
e
"0)25. The agreement is quite

good. In particular, the relative maxima in the bending moment are located at
similar frequencies for the theoretical and the numerical predictions.
Figure 8. Comparison between the theoretical and the numerical maximum bending moment for
fI
e
"0)16: numerical e-e-e, simulation; ** spectral series.

Figure 7. Time and space evolution of the bending moment.



Figure 9. Comparison between the theoretical and the numerical maximum bending moment for
fI
e
"0)25: numerical e-e-e, simulation; **, spectral series.
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The di!erences can be attributed mainly to some hypotheses used in deriving the
spectral series. In particular, the pressure load has been replaced by a rectangular
travelling load and the bending moment has been obtained by the approximate
relationship (13). The "rst assumption is made for simplicity, while the second one
is needed because the spectral series, obtained by the exact expression of the
bending moment, does not converge.

4. NUMERICAL ANALYSIS OF THE HYDRODYNAMIC FORCE

In this section the analysis of the hydrodynamic problem of water entry is
developed following a more sophisticated model, similar to that described in
reference [10], but here coupled with the dynamics of the 2 d.o.f. elastic system
described in section 3.1. Thus the present hydrodynamic model accounts for
a variable drop velocity and for the hydroelastic coupling. In this case, the
theoretical formulation accounts for the free surface deformation, neglected in the
model developed in section 2 based on the plate potential theory [9], leading to
a non-linear moving boundary problem. Of course in this case the results cannot be
obtained in closed form but a numerical procedure provides the expected
hydrodynamic force.

The #ow is assumed irrotational and the #uid inviscid, so that the velocity "eld
can be expressed in terms of the velocity potential / that satis"es the Laplace
equation. This equation is solved by means of a boundary element formulation in
a computational domain limited by the body contour S

B
and the free surface S

F
. By

introducing the two-dimensional free space Green's function of the Laplace
operator G, at any point x inside the computational domain the velocity potential is

/(x)"P
S
C
L/
Ll

n

(y)G(x!y)!/ (y)
LG
Ll

n

(x!y)D dS(y), (15)
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where l
n

is the unit vector normal to the boundary, oriented inward to the
#uid domain and S"S

B
XS

F
. Equation (15) describes completely the #ow

"eld u"$/ once the velocity potential and its normal derivative are known
throughout S.

Due to the impermeability constraint, the normal derivative of / is assigned to
the body contour while, on the free surface, the velocity potential is updated
according to the unsteady Bernuolli equation. Actually, the pressure on the free
surface is assumed to be constant and, due to the kinematic condition, the Bernoulli
equation reads

D/
Dt

"gf#
D $/ D2

2
, (16)

where f is the vertical co-ordinate, positive downwards, with f"0 on the
undisturbed water surface. In the initial phase of the impact the kinematic
contribution to the right-hand side of equation (16) is much stronger than the
gravity term, and hence the latter is usually neglected in using that equation. As an
initial condition to equation (16), /"0 is assumed on the free surface. It should be
remarked that this initial condition implies a zero tangential velocity along the free
surface and, as a consequence, the limit of the velocity "eld, from the free surface
inward the body, violates the impermeability constraint. This is due to the
neglected surface tension e!ects that would avoid the discontinuity of the normal
vector at the intersection between the free surface and the body.

The velocity potential on S
B

and its normal derivative on S
F

are determined by
solving the integral equation, obtained by applying equation (15) on the boundary
of the #uid domain S. Once the velocity potential along the body surface is known,
the dynamic pressure is computed by the unsteady Bernoulli equation.

The problem stated above is numerically solved with a scheme similar to that
employed in reference [10] that is brie#y described in the following. The boundary
at the #uid domain is discretized with segments on which the velocity potential
and its normal derivative are assumed to be constant and equal to the value
they take at the centroid. The boundary integral equation is solved by providing
the velocity potential on the body contour and its normal derivative on the free
surface. A second order Runge}Kutta scheme is employed for the integration of
motion of midpoints on the free surface and of the velocity potential above it.
A cubic spline is used to reconstruct the vertices distribution. For the sake of
accuracy, at each time step, the panel distribution is re"ned in highly curved
regions.

In the potential approximation the solution of the problem is highly challenging
due to the velocity singularity occurring at the intersection between the free surface
and the body contour [24]. This singularity in the velocity "eld leads to the
formation of a water jet that needs a suitable procedure to be described
numerically. Some aspects of this procedure are given below but more details can
be found in reference [10] that originally suggested the model.

In a "rst stage of the numerical simulation the free surface is assumed to intersect
the body. Successively, a thin water jet develops, characterized by a strong velocity
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gradient normal to the body. An accurate description of the development of the jet
region would require an increasing number of elements of smaller dimensions and,
as a consequence, a dramatic reduction of the time step. For this reason when the
distance between the midpoint of the "rst panel on the free surface and the body
contour becomes smaller than a cut-o! length, the "rst panel is replaced by
a straight line panel P normal to the body surface. In order to match both the body
and the free surface boundary conditions a linear variation of the velocity potential
is assumed along this panel. The tangential derivatives is equal to the normal
derivative assigned to the body contour while the velocity potential is assigned to
the free surface side.

During the time integration, whenever the "rst panel on the free surface beyond
P forms an angle with the body contour smaller than a limit value (usually 23), it is
excluded and the jet truncation is moved back.

Before applying the numerical procedure to the impact of elastic systems, the
water entry of a wedge with a deadrise angle of 103 has been simulated for
a constant drop velocity. After a transient phase, in which the jet develops,
a similarity solution is achieved.

At each time step the solution of the #uid dynamic problem provides the
hydrodynamic load F

h
used as the forcing term of the dynamic equation when

analyzing the impact on the 2 d.o.f.s elastic system. Thus, the problem is solved
coupling the equations of the hydrodynamic "eld and the equations of the two
elastically connected masses freely dropping into the water. The solution found
provides, at each time step, the new impacting body con"guration and the
associated velocity that are used to update the boundary conditions.

Due to the treatment of the jet region, strong oscillations characterize the
slamming load and a suitable "lter has been applied to the numerical results.

5. CONCLUSIONS

In this paper, the problem of the impact of an elastic system on the water is
investigated. The main point is related to a particular shock spectral approach, that
allows one to avoid a direct solution of the problem. In this way, an a priori
estimate of the elastic response of the systems in terms of the characteristic
dimensionless parameters of the phenomenon is obtained. However under some
simpli"ed hypotheses, the comparison with both experimental and numerical
simulations con"rms that the proposed analysis provides a very accurate estimate
of the elastic force excited by the water impact.

The procedure has a rather general character and it does not seem too di$cult to
apply this technique to more complex structures even when described by a "nite
element method.
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APPENDIX A

The basic property of the Hilbert trasform holds: HMsin p tN"!cos pt.
Therefore, the analytical signal qL

k
"q

k
#jHMq

k
N, is simply

qL
k
(t)"

1
u

k
P
`=

~=

I
k
(q) [sinu

k
(t!q)!j cosu

k
(t!q)]dq

"!

j
u

k
P
`=

~=

I
k
(q) e+uk

(t!q) dq"!

j
u

k

eju
k
t P

`=

~=

I
k
(q) e!ju

k
q dq

which proves the required result.

APPENDIX B

Starting from the analytic signal

qL
k
(t)"!

j
u

k

eju
k
t P

`=

~ =

I
k
(q) e!ju

k
q dq"!

j
2n f
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e2nj f
k
t P

`=

~=

I
k
(q) e!2n j f

k
q dq

and recalling that

f
k
"fI

k
/t*"k2 fI

1
/t*, q"qJ t*

and

I
k
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p
II
k
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p

FI
h
(tI )

n k A
(!1)k!1

a
#

1
4 fI

e
tJ

[1!cos 2nk fI
e
tJ ]B

thus

qL
k
(t)"!

j
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1

t* e2n jk2 fI
1
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p P
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k
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j
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1
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1
tI FI

k
MII

k
N .

By substituting F* t*"20/81 ml
0
"20/81 am

p
l
0

and t*"16/15 (f*/l
0
) into the

previous relationship the following equation holds:

qL
k
(t)"!Jm

p
f*

j e2njk2 fI
1
qJ

2nk2 fI
1

64
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J2 FI
k
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k
N.

APPENDIX C

Using the relationship

M
B
+n2

D
¸2

f
e
)n2

D
¸2

Df)3
e
D f*"n2

D
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e
D
15
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and since

fI 2
1
"

D
o
s
h

n2

(2¸2)2
t*2, t*"

16
15 S

2 am
p

5no
a
c

tgb
l
0

, m
p
"o

S
h¸,

Df) 3
e
D)

n
2
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2n f

1
S

=
+
k/1

Dz
k
D2 ,

after some mathematics, one obtains
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p
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¸2 K)10n A

15
16B

3
e
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fI
1

fI
e S

=
+
k/1
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k
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where MI
B

is the non-dimensional bending moment, h is the plate's thickness and
p
0
"0)5 o

w
l2
0
.

When z
k
is given in explicit form, and the frequency fI

1
is carried under the square

root, one "nally has Dz
k
D"DFI

k
MII

k
ND/k, and thus

DMI
B
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15
16B

3
e
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+
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+
k/1

SI
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where the shock spectral components are de"ned as SI
k
"2n fI

k
DFI

k
MII

k
ND .

APPENDIX D

The shock spectral component needs the computation of the Fourier tranform of
the function II

k
. Therefore,

FI
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so that
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where prime (I) and (¹) denote the inertial and the travelling contribution,
respectively. Since
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k
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1
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thus
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Therefore, the "nal expression is
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leading to the natural de"nitions of the complex inertial shock spectrum SM (I) and
travelling shock spectrum SI (T):
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APPENDIX E
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APPENDIX F

A rough estimate of h due to the combined e!ect of the inertial and pressure loads
is obtained. They can be assimilated to pulse actions of characteristics time
duration t*, at least when the structure natural period is large than t* (i.e., if fI

1
(1).
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The plate de#ection under an inertial load of amplitude F*/¸, accounting only
for the "rst mode response, is

f
ei
+

2
a S
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F* t*
n (2n f
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.

The pressure load is assimilated again to an impulse of amplitude F* of time
duration t* applied at the abscissa l

e
t* (the bound of the wetted area at the instant

in which the maximum force occurs). By assuming only the "rst mode response at
the beam midpoint, the maximum elastic de#ection due to the pressure load is

f
ep
"S

2
m

p

F*t*
2n f

1

sinA
nl

e
t*

¸ B '
1
(x) sin (2n f

1
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When fI
e
@1 (see condition (ii)), the following approximation holds: sin (nl

e
t*/2¸)

+nl
e
t*/2¸. After some mathematics one has
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.

Since the inertial and the pressure loads act in opposite direction, the total slope
is estimated as

h
.!9
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i .!9
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Thus, the applicability of the developed analysis is subjected to the condition

h
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e
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e
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